Modelling personal thermal sensations using C-Support Vector Classification (C-SVC) algorithm

نویسندگان

  • Lai Jiang
  • Runming Yao
چکیده

The personalised conditioning system (PCS) is widely studied. Potentially, it is able to reduce energy consumption while securing occupants' thermal comfort requirements. It has been suggested that automatic optimised operation schemes for PCS should be introduced to avoid energy wastage and discomfort caused by inappropriate operation. In certain automatic operation schemes, personalised thermal sensation models are applied as key components to help in setting targets for PCS operation. In this research, a novel personal thermal sensation modelling method based on the C-Support Vector Classification (C-SVC) algorithm has been developed for PCS control. The personal thermal sensation modelling has been regarded as a classification problem. During the modelling process, the method ‘learns’ an occupant's thermal preferences from his/her feedback, environmental parameters and personal physiological and behavioural factors. The modelling method has been verified by comparing the actual thermal sensation vote (TSV) with the modelled one based on 20 individual cases. Furthermore, the accuracy of each individual thermal sensation model has been compared with the outcomes of the PMV model. The results indicate that the modelling method presented in this paper is an effective tool to model personal thermal sensations and could be integrated within the PCS for optimised system operation and control. © 2016 Published by Elsevier Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran

Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...

متن کامل

Grid - Quadtree Algorithm for Support Vector Classification Parameters Selection

The Support Vector Classification (SVC) is a powerful machine learning technique for pattern recognition purposes, whose efficiency depends significantly on its parameters selection. This paper proposes an algorithm that integrates the quadtree data structure with the grid search to select the optimal (C,) SVC parameters. The goal is to reduce computational operations and processing time from ...

متن کامل

Training v -Support Vector Regression: Theory and Algorithms

We discuss the relation between epsilon-support vector regression (epsilon-SVR) and nu-support vector regression (nu-SVR). In particular, we focus on properties that are different from those of C-support vector classification (C-SVC) and nu-support vector classification (nu-SVC). We then discuss some issues that do not occur in the case of classification: the possible range of epsilon and the s...

متن کامل

The Porosity Prediction of One of Iran South Oil Field Carbonate Reservoirs Using Support Vector Regression

Porosity is considered as an important petrophysical parameter in characterizing reservoirs, calculating in-situ oil reserves, and production evaluation. Nowadays, using intelligent techniques has become a popular method for porosity estimation. Support vector machine (SVM) a new intelligent method with a great generalization potential of modeling non-linear relationships has been introduced fo...

متن کامل

B - 443 A Modified Algorithm for Nonconvex Support Vector Classification

As an extension of ν-support vector machine for classification (SVC), Extended ν-SVC was developed by Perez-Cruz et al. Their numerical experiments confirm the validity of Extended ν-SVC, but we need to solve a nonconvex QP problem for Extended ν-SVC. In the paper, we propose a modification for the existing algorithm of Extended ν-SVC, which makes possible to analyze the finite convergence and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016